
[Translated by deepl.com]
Item No. T030PRP45063

Undergraduate Research Program (PRP)
Research Papers

(No. 45)

Thesis title: Design of distributed information flow control mechanism
based on programmable kernel

Project leader: Du Dongdong, School of Software

Participating students: Vahag Ghazaryan, Shi Zhan, Zhang Yue, Yiyu
Luo.

Project execution time: February 2024 to September 2024



SJTU 45th PRP Student Research Paper

Design of distributed information flow control mechanism based on
programmable kernel

ABSTRACT

This project focuses on designing and implementing a decentralized information flow control
(DIFC) mechanism using programmable kernels (eBPF). As security becomes an increasingly critical
priority for modern operating systems, DIFC emerges as a powerful approach for managing
inter-process communication. The proposed mechanism extends existing security tools like bouheki by
allowing the monitoring and blocking of specific system calls, such as signals, thereby enhancing
system performance. This work provides valuable insights for the future development of security tools
and establishes a foundation for applying this mechanism to the OpenHarmony operating system,
addressing emerging kernel security challenges.

Keywords: decentralized information flow control, programmable kernel, inter-process
communication, eBPF, bouheki, pulsar

1. Introduction
The increasing prominence of distributed systems and IoT devices has heightened the need for

advanced security controls. OpenHarmony [1], led by the OpenAtom Foundation, aims to unify IoT
device operations to enable seamless collaboration. Traditional static security rules are inadequate for
modern complex distributed environments, particularly regarding security and data control.

Distributed Information Flow Control (DIFC) offers a flexible and effective security mechanism by
allowing each node to independently manage and control information flow, reducing
single-point-of-failure risks and providing fine-grained security management.

This study analyzes existing security tools like Pulsar, which use eBPF [2] for real-time monitoring but
lack control over inter-process communication (IPC). To address this, we enhance Bouheki [3], a
eBPF-based security auditing tool for Linux, by adding signal-level monitoring and blocking
capabilities to manage IPC effectively. This extension enables Bouheki to intercept and block
unauthorized inter-process signals, improving overall system security. We also plan to integrate DIFC
into OpenHarmony to ensure secure data transmission between devices like smart homes, wearables,
and automotive systems.

2. Background and related work
2.1 OpenHarmony operating system

OpenHarmony is an open-source operating system developed from Huawei's HarmonyOS and led
by the OpenAtom Open Source Foundation [4]. It provides a unified OS solution for various IoT
devices, enhancing seamless integration and promoting the connected device industry. As a distributed
OS, OpenHarmony supports efficient hardware collaboration and resource sharing among multiple
devices, ranging from low-power gadgets to complex terminals.

Enhancing OpenHarmony's security is crucial, as traditional mechanisms are insufficient for
complex distributed environments. By introducing a programmable kernel mechanism, OpenHarmony
combines core OS functionality with flexible control, allowing developers to customize flow control
rules and ensure secure, orderly data transfer between devices.



SJTU 45th PRP Student Research Paper

2.2 What is Distributed Information Flow Control (DIFC)

DIFC is an advanced security technology designed to precisely manage and monitor information
flow in distributed environments. As systems become more decentralized and dynamic, DIFC is vital
for maintaining data confidentiality and integrity [5]. It moves away from traditional centralized models
reliant on a single trusted control center, adopting a decentralized strategy where each node
independently manages information flow. This enhances system robustness and security by reducing
single-point-of-failure risks and allowing processes to set and enforce their own security policies.

Originally proposed by Myers and Liskov [6], DIFC supports component-level security policies,
offering fine-grained management and secure data transmission between nodes. It plays a crucial role in
various distributed applications, including cloud computing, IoT, big data processing, and
microservices. For example, the Flume system applies DIFC at the OS process level, simplifying
integration with existing applications and enabling secure interaction between legacy and DIFC-aware
processes [5]. Continuous optimization of DIFC can lead to more secure and reliable distributed
systems that protect user data while providing efficient services.

2.3 What is the Programmable Kernel Mechanism?

Early solutions like Kernel Modules (K-Modules) allowed dynamic extension of OS kernel
functionality without rebooting. However, since K-Modules interact directly with the kernel, defects
can cause instability or vulnerabilities.

To meet the need for secure and flexible kernel modifications, eBPF (Extended Berkeley Packet
Filter) was developed. Initially designed for network packet filtering, eBPF has evolved into a powerful
tool for extending Linux kernel functionality in a controlled manner. Unlike K-Modules, eBPF
programs run in a sandboxed environment and undergo rigorous validation before loading, ensuring
security and stability without direct kernel modifications.

Figure 1 High-level structure of eBPF

eBPF enables developers to execute custom programs within the kernel to monitor and influence
behavior in real time. These programs can access events like network packets, file operations, and
system calls, allowing for detailed metrics collection, security rule enforcement, or real-time
adjustment of kernel data handling without frequent user-kernel space switches, thus improving
performance. Tools like bpftrace [7] utilize eBPF for in-depth system tracing, aiding in debugging and
performance tuning. The main advantage of eBPF is its ability to dynamically and securely modify
system behavior, enabling real-time functionality additions or observations without compromising
system stability.

3. Analysis of existing methods
3.1 Overview of Pulsar Functions
Pulsar [8] is a security tool that utilizes eBPF to monitor Linux systems at runtime. It collects

security-related events from the kernel, analyzes them to detect potential threats, and generates alerts
based on predefined security rules. Pulsar enhances kernel security by providing real-time monitoring



SJTU 45th PRP Student Research Paper

and flexible threat detection capabilities. Key features of Pulsar include:
1. System Resource Protection: Restricts process privileges to prevent unauthorized access to

sensitive files, storage, and network resources, maintaining system integrity.2. System integrity
protection

2. System Integrity Protection: Monitors critical system events and configuration changes to
detect unauthorized modifications promptly, preventing system instability.

3. Network Security:Monitors network activities such as tunneling and port forwarding to detect
unauthorized remote access attempts, preventing data leakage.

4. Limitations in Communication Control: Pulsar lacks direct control over certain inter-process
communication (IPC) mechanisms like pipes, shared memory, or domain sockets, limiting its ability to
fully control inter-process data flow.

System resources Communication

FileStorage Network Process
(permission)

Memory Pipe Shared
memory

Socket
(Domain)

Signal

v v v v x x x x
Table 1:Overview of Pulsar Functions

3.2 Pulsar Architecture and Design
Pulsar's architecture comprises two main components:

1. Kernel-Mode Extensions: Utilizes eBPF probes attached to key kernel events (e.g., file
accesses, network operations) to collect system activity data in real-time with minimal overhead. These
probes can immediately block harmful behavior by matching predefined conditions.

2. User-Mode Agents: Responsible for further analyzing the data collected by kernel probes.
They perform in-depth evaluations based on complex security rules, analyzing patterns over time to
detect anomalies.

3. Data flows and interfaces: Pulsar bridges kernel and user modes by exposing collected data
through interfaces like the /proc filesystem. This allows user-space tools to access kernel-collected
information in a structured format.

4. Event Handling and Rule Evaluation: eBPF probes capture events that are evaluated against
security rules defined by administrators. By assessing these events in real-time, Pulsar can quickly
generate alerts, enabling prompt threat mitigation.a powerful framework for effectively detecting and
responding to security threats in real-time.

4. Content and methodology of the study
4.1 Overview

To address the limitations of existing tools like Pulsar, particularly in controlling IPC mechanisms,
we aim to implement Distributed Information Flow Control (DIFC) mechanisms at the kernel level by
extending Bouheki. By integrating signal-level monitoring and blocking using eBPF, Bouheki can
effectively control signaling between processes, enhancing overall system security.

4.2 Signal

Inter-process signals are an important mechanism for inter-process communication in Linux
systems, and are often used to deliver specific commands or alerts. However, they can also be used by
malicious entities to perform unauthorized actions, such as terminating critical processes or disrupting
system functionality. Controlling and monitoring signaling operations is essential for maintaining
system stability and security. We have implemented signal-level monitoring and blocking functionality
in Bouheki using eBPF programs attached to Linux Security Module (LSM) hooks
(SEC("lsm/task_kill")) to intercept and manage signaling operations. With this mechanism, we can
allow or block signaling between processes based on predefined policies, thus improving overall
system security.



SJTU 45th PRP Student Research Paper

A YAML configuration file allows administrators to specify which signals should be blocked or
allowed, applying restrictions based on criteria such as process ID, command name, or user ID. This
provides fine-grained control over inter-process communication.
signals.
mode: block # Setting mode to block specified signals
type.
deny: [2, 6, 9, 15] # Deny signals: SIGINT (2), SIGABRT (6), SIGKILL (9), SIGTERM (15)
allow: ["*"] # Allow all other signals

pid.
allow: [1234] # Allow only specific process IDs
deny: [] # Deny all others

command.
allow: ["safe_process"] # Allow specific command names
deny: [] # Deny all others

uid.
allow: [] # No specific UID allowed
deny: [] # Deny all others

This configuration allows fine-grained control of signals based on different attributes (such as
PIDs and command names), resulting in more comprehensive management of inter-process
communication.

The heart of the implementation lies in the eBPF program, which attaches to the task_kill LSM
hook to intercept signaling operations. The following code snippet highlights the logic used to
determine whether to block a signal.

SEC("lsm/task_kill")
int BPF_PROG(block_signal, struct task_struct *p, struct kernel_siginfo *info, int sig, const struct cred *cred) {
...
// Check denied signals
bpf_for_each_map_elem(&denied_types_signals, cb_check_path, &cb, 0);
if (cb.found) {
event.ret = -EPERM; // Deny signal
...
return event.ret;

}

// Check allowed signals
bpf_for_each_map_elem(&allowed_types_signals, cb_check_path, &cb, 0);
if (cb.found) {
event.ret = 0; // Permit signal
...
return event.ret;

}

// Default block if no match found
event.ret = -EPERM;
...
return event.ret;

}

4.2.2 Test methods
The test consisted of configuring Bouheki using a YAML file to define policies for blocking

specific signals, such as SIGTERM and SIGKILL. Bouheki was then run with this configuration and
the blocked signals were used to locate background processes (e.g. sleep) via the kill command. The
expected result is that these signals are intercepted and blocked, and an "operation not allowed"
message is displayed, proving the effectiveness of our solution.

$ sleep 1000 &
$ kill -15 $!
kill: sending signal 15 (SIGTERM) failed: Operation not permitted

6. Conclusion
This research successfully implements the DIFC concept and enhances Bouheki's ability to

manage inter-process communication (IPC), including signals, thus improving system security in a
distributed environment. By analyzing and addressing the limitations of existing tools (e.g., Pulsar), we
extended Bouheki with eBPF-based monitoring and blocking capabilities, thus preventing unauthorized



SJTU 45th PRP Student Research Paper

communication and increasing system resilience. While full DIFC integration is still a work in progress,
future work will focus on integrating these mechanisms into Bouheki and OpenHarmony to meet the
need for flexible security controls in modern distributed systems.

7. References
[1] OpenHarmony, "OpenHarmony - Open Source Operating System," OpenAtom Foundation.

Available: https://openharmony.io/
[2] eBPF Project, "What is eBPF," 2023. Available: https://ebpf.io/what-is-ebpf/
[3] Bouheki. (n.d.). Bouheki - KRSI (eBPF + LSM) Based Linux Security Auditing Tool.

Available at:https://github.com/mrtc0/bouheki
[4] OpenHarmony Project, "OpenHarmony Overview," OpenAtom Foundation, 2023.Available:

https://gitee.com/openharmony/docs/blob/master/en/ OpenHarmony-Overview.md
[5] . Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris,

"Information Flow Control for Standard OS Abstractions," in Proceedings of the 21st ACM Symposium
on Operating Systems Principles (SOSP), MIT CSAIL & UCLA, 2007.

[6] . C. Myers and B. Liskov. "A Decentralized Model for Information Flow Control." in Proc.
16th SOSP, Oct. 1997.

[7] Bpftrace: high-level tracing language for Linux. (github.com)
[8] Pulsar. (n.d.). Pulsar - eBPF-based Security Tool. Available at: https://pulsar.sh/

8. Acknowledgements
First of all, I would like to thank my supervisor for his guidance and help throughout the research

process. As an international student, I sometimes encountered language barriers in meetings and
discussions, but my supervisor and fellow students in the group were always very patient in helping me
by explaining and translating the parts that I did not understand so that I could better participate in the
research. I would like to thank all the projects that make their research and source code publicly
available, such as pular and bouheki, whose work has been an important support to my research.

This research experience was invaluable to me, not only was it my first in-depth involvement in
scientific research, but it also inspired me to pursue a PhD after graduation to further explore this field.
Therefore, I would also like to thank the organizers of the PRP program for giving me this opportunity
to find my passion for research.

https://openharmony.io/
https://ebpf.io/what-is-ebpf/
https://github.com/mrtc0/bouheki

